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The advancement of virtual reality (VR) technology in cyberspace is amazing, but its
development is mainly concentrated on the visual part. In this paper, the development of
VR technology to produce sound based on the exact physics is studied. Our main concern is
on the sound generated from vibrating structures. This may be useful, for example, in
apprehending sound field characteristics of an aircraft cabin in design stage.

To calculate sound pressure from curved surface of a structure, a new integration scheme
is developed in boundary element method. Several example problems are solved to confirm
our integration scheme. The pressure distributions on a uniformly driven sphere and
cylinders are computed and compared with analytic solutions, and radiation efficiency of a
vibrating plate under one-dimensional flow is also calculated. Also, to realize sound
through computer simulation, two concepts, ‘‘structure-oriented analysis’’ and ‘‘human-
oriented analysis’’, are proposed. Using these concepts, virtual sound field of an aircraft
cabin is created.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The theory of acoustics was established in the 19th century by Stokes and Rayleigh. Many
analytic and numerical approaches of calculating sound pressure are concentrated on
calculating sound pressure generated from vibrating plates [1, 2]. For curved structures,
radiating sound field of a cylindrical structure was analyzed [3] and a thin sphere was used
in the analysis of sound field with consideration of interaction between structure and
exterior sound field [4]. A structure, which is composed of a cylindrical plate and shell, was
used in the analytic analysis of noise of an aircraft cabin [5].

The concept of virtual experiment can be defined as follows. ‘‘The virtual experiment is
an enhanced numerical simulation which serves not only resulting data but also feeling of
resulting environments to human beings.’’ A conceptual picture of a virtual noise
experiment is shown in Figure 1. In Figure 1, a person can hear noise induced by vibration
of an airplane, not in real space but through a headphone which is connected to a
computer on which real physics are projected. To project a continuous real sound field to a
digitized cyberspace, we introduce two concepts, ‘‘structure-oriented analysis’’ and
‘‘human-oriented analysis’’.

In this study, sound pressure is calculated using boundary element method (BEM).
Linear 3-node triangular and 4-node rectangular elements are used, and a new integration
technique is developed for integration on curved surfaces. Also, a technique of considering
interactions among structure, interior and exterior sound field is developed. To consider
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.



Figure 1. Concept of the virtual noise experiment.
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impedance characteristics of a structure, eigenvalues and mode shapes of finite element
method (FEM) [6] model of structure are used.

For the verification of our integration scheme, sound pressure distributions on
uniformly driven sphere and cylinders are computed, and the radiation efficiencies of a
vibrating plate under one-dimensional flow are also calculated. Then, virtual realization of
a sound field from a vibrating aircraft cabin is chosen to show the applicability of the
developed virtual reality (VR) technology.

2. GOVERNING EQUATIONS OF SOUND FIELD

When there is one-dimensional flow along x-axis, the following potential function and
boundary condition can be introduced to obtain sound pressure [7].
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Here, the Green function G is defined as
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Figure 2. Two linear BEM elements used in this study.
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Then, sound pressure at position ðx; y; zÞ can be obtained:
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Using BEM, we can convert equation (6) into a matrix form.
After integrating equation (6) moving observer’s position ðx; y; zÞ all over the nodes on

the surface, the following matrix form, which is the relationship between sound pressures
on the surface and displacements of the surface in the surface normal direction, can be
made:

½B	 Pf g ¼ C½ 	 Unf g: ð7Þ

In the case of 4-node square elements, diagonal terms of matrices become singular. Those
singular terms are integrated after dividing the square element into two triangles [6, 7].

Using equation (8), equation (7) can be rewritten to equation (9), which is our final form

@fPg
@n

¼ �r
@fVng
@t

¼ �rjofVng ¼ ro2fUng; ð8Þ

½B	fPg ¼ ½D	fVng: ð9Þ

The elements used in this study are shown in Figure 2.

3. HOW TO OBTAIN THE IMPEDANCE MATRIX OF STRUCTURES

To consider interactions between structure and sound field, the inverse of structural
impedance matrix is needed. In this study, this matrix is obtained by using eigensolutions
of structure as

Z�1
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When o is close to or in equation (10), ail can be rewritten approximately as follows:

ailðoÞ �
Xnð4NÞ

r¼1
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r Þ
: ð11Þ

Here, n is an integer which is not greater than N: If orðr ¼ 1; 2; � � � ;NÞ are located
remotely enough, n can be assumed as 1.

This approach has the following merits over the ordinary approach [8, 9]:

1. It removes the process of getting the inverse matrix of [Z]. So, numerical errors resulted
from the inverse process can be removed.

2. Erroneous effects resulted from inaccuracy of FEM model in high-frequency region will
be removed because eigenvalues and mode shapes of only the selected frequency range
are used.

3. Some useful information on characteristics of radiating sound can be observed by
looking at the mode shapes.

MSC NASTRAN [10] is used in calculating the eigensolution of a structure.

4. ANALYSIS OF SOUND FIELD

Governing equations of interior and exterior sound field can be rewritten, respectively,
from equation (9) in the following form:

½B	ifPgi ¼ ½D	ifVngi; ð12Þ

½B	efPge ¼ ½D	efVnge: ð13Þ
Consider the continuity of displacements on the surface of structure,

fvng ¼ fVngi ¼ fVnge: ð14Þ
Then, by the equilibrium of forces on the surface of structure,

½Z	fvng ¼ fFg � fFgfluid ¼ fFg � ½fFgfluidi
þ fFgfluide

	: ð15Þ

From equations (12), (14) and (15), a equilibrium equation on the surface with respect to
the interior sound field and the structure can be derived:
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j k
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Equation (16) can be rewritten as follows:

½P11	fPgi þ ½P12	fPge ¼ ½Q1	fFg; ð17Þ
where

½P11	 � ½B	i þ ½D	i½T 	½Z	�1½T 	T ½Ad 	; ð18Þ

½P12	 � ½D	i½T 	½Z	�1½T 	T½Ad 	; ð19Þ

½Q1	 ¼ ½D	i½T 	½Z	�1: ð20Þ
Then, we can derive an equilibrium equation on the surface with respect to the exterior
sound field and the structure using equations (13)–(15):

½P21	fPgi þ ½P22	fPge ¼ ½Q2	fFg; ð21Þ
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where

½P21	 � ½D	e½T 	½Z	�1½T 	T½Ad 	; ð22Þ
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From equation (17) and (21), we can derive a matrix equation as follows:
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5. HOW TO MAKE VIRTUAL SOUND

The convergence of virtual sound is different from the conventional convergence
concept in mathematics. ‘‘Virtual sound converges to real sound’’ means virtual sound and
real sound give same feelings to the hearer. So, to efficiently obtain converged virtual
sound, two dominant factors of sound should be considered, which are characteristics of
structural vibration and human’s hearing.

To consider the structural characteristics, structure-oriented analysis concept is devised;
to consider human’s characteristics, human-oriented analysis concept is devised; and to
consider both concepts, sound pressure in frequency domain should be obtained before
calculating sound pressure in time domain.

When sound pressures on surface in frequency domain are obtained by equation (25),
sound pressures at an observer’s position in a sound field can be calculated using the
matrix form of equation (6). Using these solutions, sound pressure function of time is
given by equation (26).

pðtÞ ¼
X1
i¼0

#PPi expðjoitÞ �
XN�1

i¼0

#PPðiÞ expðjoðiÞtÞ: ð26Þ

In equation (26), the determination of N and oðiÞ is very important for the convergence of
virtual sound. For this, structure-oriented analysis and human-oriented analysis are
introduced.

Structure-oriented analysis is the concept that oðiÞ is selected among structure’s natural
frequencies and is developed for the following three reasons:

1. oðiÞ; at which radiating sound pressure from structure is relatively high, is among the
natural the frequencies of structure.

2. The frequency response function of structure can be more easily calculated by using
equation (11) instead of equation (10).

3. The effects of erroneous terms of FEM model in high frequencies can be removed by
structure-oriented analysis, because the structural properties of only the selected
natural frequencies will be used in calculations.

However, calculation of sound pressure at all eigenmodes takes too much time, and
mode shapes of closely packed eigenmodes are so alike that their radiation characteristics
are almost indistinguishable by human ear. Therefore, it is somewhat redundant to
calculate sound pressure at all natural frequencies. To treat such problems, human-
oriented analysis is introduced. The concept of human-oriented analysis is devised to
divide the frequency domain using the ratio of the octave. Basically, frequency domain is



Figure 3. The ratio of the octave.
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divided using an octave scale, and if necessary, the musical interval will be divided again
by the ratio of the octave. The ratio of the octave is illustrated in Figure 3. This concept is
similar to the schemes of virtual realization in computer graphics which express things
using polygons.

Therefore, the frequency selecting scheme used in this study can be summarized as
follows:

1. Compute eigensolutions of structure.
2. Determine a frequency region where the values of eigenvalues and mode shapes can be

calculated accurately judging from d.o.f. of FEM model and spectral densities of
external forces.

3. Divide the frequency region selected in step 2 using the concept of human-oriented
analysis.

4. Select frequencies among the natural frequencies which are the closest to the
frequencies determined in step 3.

After selecting the frequencies, sound pressure is calculated at each frequency. Using
these frequencies and pressures, we compute an approximate pressure function which is
given in equation (26). Then, data at each time step can be prepared by an approximate
pressure function. The final results are obtained in the form of a wave file. While wave files
have several kinds of formats [11], we adopted 16-bit, stereo format with 44 kHz of
sampling ratio.

6. INTEGRATION ON CURVED SURFACES

To integrate a BEM element on a curved surface, local co-ordinate systems defined at
each integration point are created and the co-ordinate system on each element is
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transferred from global to a corresponding local co-ordinate system. The local co-ordinate
system at an integration point is obtained using normal vectors of the surface at the
integration point, and the process of obtaining the local co-ordinate system is as follows:

1. Calculate normal vectors of a surface at each integration point using analytic solutions.
The accuracy of normal vector is a very important factor, so it should be obtained using
the exact geometry data (or CAD data), not the FEM mesh data.

2. Using the normal vector, derive two orthonormal base vectors of the given element.
3. Then, the two orthonormal base vectors are the base vector of 2-D local space in which

integration at a given integration point is performed.

As for normal vectors, at first, one local co-ordinate system is used on each element. In
other words, on an element, the local co-ordinate system is fixed, regardless of the position
of the integration point. In this case, the normal vectors at the element’s center point are
obtained by the arithmetic average of normal vectors at each node in the element
(however, it produces poor result as shown in Figure 6).

Everstine and Henderson [4] use first order numerical integration and obtain good
results. From this, we realize that normal directions at integration points are very
important, and we use a different local co-ordinate system at each integration point in an
element. The relationships between integration point and local co-ordinate system are
illustrated in Figure 4.

7. NUMERICAL ANALYSIS I}UNIFORMLY DRIVEN SPHERICAL BEM MODEL

Two cases are tested with a uniformly driven spherical BEM model. The first case is for
checking the validity of integration scheme on a curved surface and the other case is for
comparing the calculated pressure distribution pattern with analytic solutions.

For the first case, pressure on the surface of a sphere which is uniformly driven is
calculated (see Figure 5) and inspected if the resulting pressure is uniform on the surface.
The sphere-shaped BEM model, whose radius is 5m, has 1446 nodes and 2888, 3-node
triangular elements (see Figure 5). As shown in Figure 6, the resultant pressure
distribution is approximately uniform over the entire surface.



Figure 5. Uniformly driven spherical shape BEM model with 2,888 3-node triangular elements.
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Now, for the second case, the pressure diffusion property of the spherical BEM model
whose radius is 5m is tested. We set frequencies, sound pressures and displacements on the
surface to be the same as those of the fundamental solution of this model, and calculate
the pressure distribution pattern with distance. As shown in equation (27) and (28), sound
pressure and its first order derivative in the surface normal direction at xs � ðxs; ys; zsÞ can
be obtained from the analytic fundamental solution as follows.

p�ðx; xsÞ ¼ �expð�jkjx� xsjÞ
4pjx� xsj

; ð27Þ

@p�

@ns

¼ �ðns � eRÞ
exp

4pR

1

R þ jk
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: ð28Þ

A BEM model, consisted of 102 nodes and 200, 3-node triangular elements, is used to
compute the error in pressure drop with distance. As shown in Figure 7, the computed
values approximately correspond to the fundamental solutions.

8. NUMERICAL ANALYSIS II}RADIATION EFFICIENCY OF VIBRATING PLATE
UNDER ONE-DIMENSIONAL FLOW

The radiation efficiency of a plate under one-dimensional flow is analytically calculated
by Y. M. Chang and P. Leehey, and it is adopted in some papers for the verification of
results [12].
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The radiation efficiency, s; is the ratio of acoustic powers of the current model and a
baffled piston. [3] That is,

s ¼ P
P0

¼ P
1
2
r0cAhv2

ni
: ð29Þ

Sound power is defined as follows. [13]:

P ¼ 1
2

Z
S

Re p�vn½ 	 dS: ð30Þ

In this paper, an 1� 1m aluminum plate with elastic modulus E ¼ 70GPa, the Poisson
ratio u ¼ 0�3 and density r ¼ 2700 kg/m3 is used. The fluid is assumed as air whose density
is 1.21 kg/m3, and sound speed is 343m/s. The results are presented in Figure 8. In Figure
8, the (m; n) mode means that the number of anti-nodes of mode shape in the longitudinal
and the lateral direction are m and n respectively.

9. NUMERICAL ANALYSIS III}UNIFORMLY DRIVEN CYLINDRICAL SHELL

Three cylindrical BEM models are used to see variation patterns of radiated pressure
according to the ratio of axial length and diameter. The diameters of three cylinders are
10m and axial lengths are 20, 40 and 200m, respectively, and the base and the top side are
assumed to be covered with a rigid baffle. All of the BEM models have 32 nodes in the
circumferential direction and 41 nodes along the axial direction.



1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

0.00

0.20

0.40

0.60

0.80

1.00

S
ou

nd
 P

re
ss

ur
e 

(P
a)

Node Number

(Axial Length) / (Diameter) = 4.88

(Axial Length) / (Diameter) = 9.5
(Axial Length) / (Diameter) = 95 

Figure 9. Several pressure distribution patterns depending on the ratio of cylinder’s radius and axial length.

25 30 35 40 45 50

0

1

2

3

4

5

6

7

M
ag

ni
tu

de
 o

f f
or

ce
s 

(N
)

Frequency (Hz)

Figure 10. Magnitude of driven forces in the frequency domain.

VIRTUAL REALITY OF SOUND FROM VIBRATING STRUCTURES 319



S. J. KIM AND J. Y. SONG320
It is found that there is no variation in the circumferential direction and pressures in the
axial direction are distributed on surfaces of each cylinders as shown in Figure 9. In Figure
9, the distribution pattern becomes more independent of the end effect as the axial length
is increased.

10. VIRTUAL EXPERIMENT}VIRTUAL INTERIOR SOUND FIELD OF A SIMPLY
MODELLED AIRCRAFT CABIN

Usually, aircraft fuselage has been modelled simply as a cylindrical model [5, 14]. In this
study, a cylindrical shell structure whose top and base sides are covered with a rigid baffle
is adopted as a simple model of an aircraft fuselage. The radius of the model is 4�2m, and
its axial length is 20m, and the thickness of fuselage skin is assumed as 1mm. The FEM
model has 448 nodes and 416 4-node square plate elements. The BEM models, which are
composed of exterior and interior sound field models, have 416 nodes and 832 3-nodes
triangular elements.

Appropriate frequencies at which sound pressure are calculated are selected by the
concepts of structure-oriented analysis and human-oriented analysis. First, based on
structure-oriented analysis, eigenvalues of the FEM model are obtained, and a frequency
region that can be accepted to be reasonable with respect to the d.o.f. of FEM model is
selected. Then by human-oriented analysis, some frequencies are selected in that frequency
region. This time, the frequency domain is divided first by the ratio of the octave and then
the domain between each musical interval is divided by the ratio of the octave again.
Through these processes, 24�8, 32�5, 33�1, 37�2, 42�3, 44�3, and 50Hz are selected.
Figure 11. Definitions of positions in a virtual fuselage.



Figure 12. Mode shape of the cylinder at 50Hz.
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The fluid of the interior and exterior sound fields are assumed as air (its density is
1�21 kg/m3 and speed of sound is 343m/s) and the flow speed mach number of the exterior
sound field is assumed as 0�4. The material of the cylinder is considered as Al2024-T3, so
its elastic modulus E is 70GPa, the Poisson ratio is 0�32075, and density is 2685 kg/m3.

In this virtual experiment, the external forces are restricted to a low-frequency band
because we consider forces generated from low-frequency flutter phenomenon of wings.
Low-frequency forces given in Figure 10 are imposed on the cylinder at four points where
the main wings are combined with the fuselage.

The sound pressures are calculated at six virtual seats. For stereo sound, sound at each
ear is required for a seat. So sound pressures at 12 positions, as shown in Figure 11, are
calculated. In Figure 12, the mode shape of the cylinder at 50Hz is given. From the figure,
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Figure 13. Sound-pressure level at each virtual seat.
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we can see that the region around the center of the cylinder in the axial direction is the
node of vibration. So, the sound level is small at the center of the cylinder.

In Figure 13 sound pressure levels at each seat are given. When we hear the virtual
sound, it feels not like sound but like a flow of wind because of its low frequency.
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However, we can feel the characteristics of interior sound as if we are in a real aircraft. The
process of this virtual experiment is summarized in Figure 14.

11. CONCLUDING REMARKS

In this study, virtual reality technology based on the exact physics is developed
to produce sound in cyberspace. To realize the sound by computer simulation, two
concepts, structure-oriented analysis and human-oriented analysis, are proposed.
Boundary element method is used to calculate sound generated from vibrating structures.
For integration on curved surfaces, an integration scheme is developed using global–local
co-ordinates transformation. To confirm our developed scheme and check the
applicability of the sound VR technology, several example problems are solved. For the
verification of our scheme, sound pressure is calculated and compared with available
analytic solutions and numerical results. In order to check the applicability of our scheme,
a virtual experiment is performed: cabin noise realization of an aircraft is chosen as an
application example.

Computation costs less than experiment. Also, extreme environments, which cannot be
simulated in ordinary experimental environments, can be easily simulated in cyberspace.
So, the proposed virtual reality technology of making sound has many benefits in the field
of the design process concerning sound or noise.
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APPENDIX A: NOMENCLATURE

G the Green function when one-dimensional flow exists
c speed of sound
c potential function
o angular velocity (rad/s)
k wave number, o=c
V speed of flow
M Mach number, V=c
p sound pressure
u displacement vector of structure
{U} displacement vector of fluid
{v} velocity vector of structure
{V} velocity vector of fluid
x; y;z components of a Cartesian co-ordinates in the x�; y� and z-axis respectively
S surface domain of a structure
{P} sound pressure vector at the nodes on surface
O sound field domain
aij (i; j)th component of a structure’s frequency response matrix
mr modal mass of the (r)th eigenvalues
[T ] square matrix which transfers d.o.f. of structure to d.o.f. of fluid and

½T 	½T 	T ¼ ½E	
[B], [C] square matrix
[Ad ] square matrix which transfers surface traction to equivalent concentrated load
oðiÞ angular velocity of the (i)th selected mode
pðiÞ calculated value of pressure in the (i)th selected mode
[D] �j=o½C	
[Z] impedance matrix of structure

mfn (n)th element of (m)th eigenvector
P sound power
r0 density of undisturbed fluid
hVni2 mean square of surface normal velocity
x position vector whose base is origin
ð�Þ time derivative of ð Þ
ð Þfluid value of fluid
ð Þs value on surface
ð ÞR value in the radial direction
ð Þn (n)th element of vector ð Þ
ð Þ� complex conjugate of complex number ð Þ
ð Þpq (p; q)th element of matrix ð Þ
ð^Þ value in frequency domain
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